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Abstract

In an earlier paper (Tjdstheim 1984a) a general framework was
introduced for analyzing estimates in stationary nonlinear time
series models. In the present paper the framework is enlarged to
include certain nonstationary and nonlinear series. General conditions
for strong consistency and asymptotic normality are derived both
for conditional least squares and maximum likelihood type estimates.
Examples are taken from threshold autoregressive, random coefficient
autoregressive and doubly stochastic (dynamic state space) models. The
emphasis in the examples is on conditional least squares estimates.
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Introduction

o N T v,
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The assumption of stationarity imposed in Tjgstheim (1984a)
(hereafter referred to as T1) is sometimes too strict. In this paper
we will try to extend the general framework established in Tl to
some classes of nonstationary models. We will only treat certain
types of nonstationarity, such as that arising from a nonexisting
stationary initial distribution, or the nonstationarity arising from
a nonhomogencous generating white noise process {Ct}' We will also
briefly look at autoregressive (AR) models, where the AR coefficients
are deterministic functions over time.

The approach to proving consistency and asymptotic normality is
similar to the one used in Tl. We rely on Theorem 2.1, but need a
scaled version of Theorem 2.2 of that paper. The ergodic theorem
and the Billingsley (1961) central limit theorem for an ergodic
strictly stationary martingale difference sequence will not be
available any more, and, as a consequence, a heavier use of pure
martingale arguments (mainly martingale type almost sure convergence
and central limit theorems) are necessary to obtain our results.

The results are not complete, and our examples are not as general
as in T1, but we believe that they are representative at least for
some of the difficulties arising. ;

2. Conditional least squares. N

Throughout the paper we will usc the same notation as in T1.
Thus we let {Xt’ tel} be a d-dimensional discrete time stochastic :
process taking values in Rd and defined on a probability space .
(2,F,P). The second moments of {Xt} will be assumed to cxist. The

index set I is either the set of all integers or the set of all
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positive integers. We denote by Fz the o-field generated by

A e,
»e
4

Ny . . X
{XS, s<t} and by tht-l(B) the conditional expectation EB(thFt-l)’

"‘

-

4 5
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which depends on an r-dimensional parameter vector B. As in T1,

s

LA

beX)
O
v

we will often suppress 8 in our notations. Moreover, we denote by

T

ft{t—l= ftlt_l(B) the dxd conditional prediction error covariance

matrix defined by

M v Ty X
ft|t-1=E{(xt'Xt|t-1)(Xt'xtlt-l) |Ft-l} (2.1

We assume that observations (Xl,..,xn) are given, and we intend
to estimate B8 by minimization of the conditional least squares

penalty function given by

v ; 2
QB = § XXy (B, (2.2)
t=m+1

where |*| is used to denote Euclidean norm, and where in practice

the lower summation limit has to be chosen so that X is well-defined

m+1|m

in terms of the observations (X Xn)' Unlike the case of consistency

12"

for stationary series in Tl, it will not be possible to condition

. on F: 1™, which is the o-field generated by {XS, t-m<s<t-1}. This is
ot -
}ti\ because we will rely more on pure martingale arguments, and then we
)
::jf need an increasing sequence of o-fields. Hence, in this paper we will

X

always condition with respect to Ft-l‘

For autoregressive type

processes of order p it will then be possible to express Xm+1|m

in terms of (Xl,...,\n)if min(n,m) - p.

The following two theorems correspond to Theorems 3.1 and 3.2 of

;]} Tl. We denote hy ' the true value of ..
g
o I . - . .
OO Theorem 2.1:  Assume that ‘Xt’ is a d-dimensional stochastic
® o ' N
S A process with [ \tl < = and such that th'_l(ﬁ) = hw(xt‘rt RIRE almost surely
\\O 1) -
:;S twice continuously differentiable in an open set B containing ., ‘orcover,
e
~ P
i\j§ assume that there are two positive constants M1 and Mz such that for ¢>pmel

[/
)
. &
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JaxT 3X .
0K . t|t-1,,0 0 t{t-1 ,0 2
N Bl (B Byen B —g — (B <My ;
(+ {

o

. and :
= 2%x! 2’ :
- . t]t-1..0 0 t]t-1_.0 N
CN2: Bs—pap (B ) f|1(B) 5 ag (B =M :
- 1) 1]

4 - ‘
> for i,j=1,...,r. 3
-. ‘. A
\:_} .
7 oN3: 1im inf A%, (8%) 255 o :
w7 min X
\':vq noo
L n 0, . . . |
where ,\m.m(B ) is the smallest eigenvalue of the symmetric non-

\ negative definite matrix An(B ) with matrix elements given by

2 n o ox! 3 'j
o n g0y o Lly  tle-10) Tele-1.0 -
4:_; t=m+1 i j
- 0 . 3
-j:_- CN4: Let N(S = {B8: |B-B | < 8} be contained_in B. Then .
S . o n - RN '
. . _ T -

1im sup 8 AT (B) - AT, (B) + = {x_-Xx B} ———— '
t . n>eo 8§40 1% iy &) “Lmﬂ[ t tlt-l( ) aeiasj (8) :
: 0T azxt[t—l 0 |2-S- :
o - {Xt'xt;t-l(B )3 9B, 98; (D]} <= ;
) ;
- for i,j=1,...,r.
-'*: A A A .
N : . - T 4
:: Then there exists a sequence of estimators Bn [Bnl""’snr] such that :
b o~ as. 0 : i :

- Bn 3> B”, and such that for € > 0, there is an event in (Q,F,P) )
0 , 2 .

._:: with P(E) > 1-¢ and an no such that for n > nO, BQn(Bn)/aei =0,

w ~ P
i=l,...,r, and Qn attains a relative minimum at Bn o
LY ‘ .
X~ Proof: From the definition of Qn(B) in (2.2) it is easily seen that X
S N
.j.\ {30 (BO)/BR.,FX} is a zero-mean martingale. The increments N
:»: n i’ n R
o -'. - - . \
“. U, E)Qt/BBi aQt-l/aBi are such that (using CN1) |
i ;
R .
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BX g
E(u,8™) = 4E —ﬂ‘——(s Iy 1oy (B )—t—l‘—(s") < 4M (2.4) ;

t|t- 1

and it follows from a martingale strong law of large numbers (cf.
a.s.
Stout 1974, Th. 3.3.8) that n™'aq (8")/38, > 0 as n >, and Al

of Theorem 2.1 of T1 is fulfilled. Computing second order derivatives

we have X
- 82Q n XL X n a2x T ~ it
- t]t-1 “"t]t-1 t]t-1 ; 3
o 9R.98. 38 25 381 [)RJ -27 BBLGBJ (Xt‘)\tlt_l). (2.5) 3

t=m+1 t=m+1

0 -
Here {32 xtlt (8 )/BBiBBE[Xt-XtIt_I(BO)]} defines a martingale difference

sequence with respect to {Fi} and using CN2 while reasoning as above

we have ;
320 n BX ax a.s. -

1 ° *n 0, 2 t]t-1 .0 “"t]t-1 -

= 8) -=1} (8) @+ o (2.6) ¢

n 86188j N ¢onel 881 SBJ .

as n»>», and hence CN3 implies A2 of Theorem 2.1 of Tl1. Using (2.5)

it is seen that CN4 is identical to A3, and the conclusion now follows

»~
'{"n e d

o~

wWor

from Theorem 2.1 of T1. ||

L

The conditions CN1 and CN2 may be weakened in two directions.

ﬂd According to Theorem 3.3.8 of Stout (1974), M., i=1,2, may be replaced
. o. ‘.‘
{3 with Mit 1 with Ofgi<1, i=l,2, allowing a moderate growth of moments ;
) %
}{ with t. Using Corollary 3.3.5 of Stout (1974) it is seen that another -t
®
- p0551b111ty is to replace CN1 with <
. % 8;( T 1+¢ e
0 0 n
" ——t-l-t——(s )X, tht-l(e )}|10g" —-ﬂt—l—(s )X, tht (8} ] <M (2.7
= ' 1T “
a ) e
o 4
A for i=1,...,r for some € > 0 and CN2 with the obvious analogue. o
:; When we now turn to the asymptotic distribution of Bn’ we cannot 3
- rJ
rely on Billingsley's (1961) result for ergodic strictly stationary ”

v "
~."- ~'~ .:‘:‘:‘:';'-\' -"-‘ . ‘».' "4

martingale difference sequences which was used in Theorem 3.2 of TI.

However, there are more recent results from martingale central limit

L N T
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theory that can be applied. Typically these require a random scaling
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! factor. -
~ - R
. . . et

Let thlt_l/BB be the dxr matrix having Btht_I/BB.l, i=1l,...,r, as -"
. its column vectors and let Rn be the rxr symmetric non-negative A
definite matrix given by :'.:::’.‘
o1 N L

n aX : aX

=5 t]t-1 . t]t-1 (2.8) .

( n " L 38 t]t-1 T 3B - .9
t-m+1 ¥$n_
o
Moreover, denote by Tn the stochastic rxr symmetric non-negative :3'_.
definite matrix defined by :'::l

2 ax 2
T = ? t{t-1 “Ttft-1 (2.9) X
N el R aB x._.:

.
- "--\
We will denotc by A ! the Moore-Penrose inverse of a matrix A and -

]
by det(A) the determinant of A. Then we have NN

N

Theorem 2.2: Assume that the conditions of Theorem 2.1 arc fulfilled N

and assume in addition that

TR
v AL
)0, 2

- .

DN1: 1im inf n~  det{R_(8°)} > 0 T
' ne " i
—
and e

1 o |8 It 0 - 0.,T “e

. =73 t _ R

DN2: ROZ(B) z=m+1 (8 ){x tht-l(s VXX (8) 8
3X P v

t|t-1 0 | - 0 -
. —Bé_ (8 )]Rn (6) > I ‘:::_._

(4
p where Ir is the identity matrix of dimension r. ol
B ~ -:‘:\
Let {Bn} be the estimators obtained in Theorem 2.1. Then S)
d i
-4 0 o, o~ 0 R

2 . - Q0 .
RGBT (B)(B -687) ~ N( 1) (2.10) Lo
X
“-’_'t
AR
AARS
‘.".\

.
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L _ . 0 \
e Proof: Note first of all that Rn(B ) is finite from CNl. Let :
T
t aQ n aX ~ n .
1 n _ t|t-1 _-
N 58 88,7 -L ——l—as KX et D g (2.11) .
.. t=m+1 .
o tzm+l oo
:::f Since we are dealing with an asymptotic result, as in the proof of Theorem 2.2 of ‘
. . :
hed Klimko and Nelson (1978), we may assume that Sn(Bn)=0. Taylor g
oy 0 L0 >
O expanding Sn about 8 and subsequently normalizing with R;(B )
::fﬁ we have
e
3S ~ '
: _ a0 0 S PN (NS | P 0 .
::::: =R T(B)S (B7) + R (8 )58 (82) (B -87) (2.12) ’
::" where B; is an intermediate point between Bn and 80. Again, -
;3 reasoning as in the proof of Theorem 2.2 of Klimko and Nelson (1978), v

in the limit as n > @ we may replace B; by BO. Moreover, using DN1,

PN
v
et
.

the boundedness condition CNZ and the orthogonal increment property

.

" of a martingale differcence sequence, it follows from Chebyshev's )
N inequality that there exists an n_ such that N
o~ gC :
S g
o F(8%) & R 8% ) 5789 - { (e")lr (2.13) |
X t=m+1 :
) p !
', -:'_'4 is bounded in probability for nino. Since, from Theorem 2.1, Bn > Bn, ';
. »
B ~ p R
-:?_- it follows that Fn(BO) (Bn-BO) + 0, and therefore, when taking 3
20 )
; distributional limits in (2.12%, an(B )BSn(B;)/BB may be replaced by
= 3 :
" JL,oon t. .0 X -5 0 0 &
p . -2 = 2
N a B8O Egp(B)IFL_ 1= REBIT (B, (2.14) .
t=m+1 o
= ' :
3" and hence from (2.10) and (2.12), the theorem will be proved if we Ty
- d
-3 -5 0 0 -
- can prove that R_*(B)S (B') - N(O,1). .
- n n T -
:,-_: We use a Cramer-Wold argument. For an r-dimensional vector A N
" -
;', of real numbers it is sufficient to prove that )
54 S
. .
., b
q.'. .9
.::j X
2 !
e R R AR w‘ SRR v oo R

oy .1.‘.‘ S
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b

N

‘.:';_'.: 7

R T -% 0 0, 4 T

o RS (89~ Ny, (2.15)

For this purpose we introduce

T
- 9X ~
O _L
£ = _)\TR ; t]t-1 (xt-x

t-1 T -4

N tn n 3R tlt—l) = A Rn Ct (2.16)

N n
T,-%. - -

% - Then A Rn Sn tzmﬂgm, and for R=B we have that gtn’ m+1<t<n, are
.:' martingale increments for a zero-mean square integrable martingale
A i
vl array J. = 5 £, , m+l<i<n, It is then sufficient to verify the
v in Coeptn
{ following conditions {(cf. Hall and Heyde 1980, Th. 3.2, where the
-

:::- nesting and integrability conditions of that theorem are trivially
o 0
oy fulfilled) for B=B :

-‘._1 P
°
AN (i) max |E§tn| +0
. m+1<t<n
- n P
oy 2
s (i) ] &, > AN
~ t=m+1

l”‘
4

.
P
(i

(iii) E( max EZ ) is bounded in n.

o m+l<t<n OO
:J. -
,, The condition (ii) follows trivially from the definition of gtn
f:{- and the assumption DN2. Moreover,
&: n 1, 1 1
o max €2 <] g2 =AY iR, (2.17)
“ m+lstsn t=m+1 t=m+1
::‘;: and using the definition of Rn in (2.8) we have that the expectation
'_:
%4 of the extreme right hand side of (2.17) is AA, and (iii) follows
- :
. from this.
o
“f?. Also, using the technique described in Hall and Heyde (1980,
S
\ p. 53), for a given £>0
j'.:: n ) 5
) P ( max Iatnl >e) =P {) gtnl(lgtnl >¢) > e} (2.18)
e m+l<t<n t=m+1
I.‘ — —
-~ .. .
- where 1(*) is the indicator function. But
N
N
LY

e
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58,0

Wy
"tJ
=
n n n
2 T, -% T T, =% T -L -y
Y OESES 1(le, |>e)p=] A RICE{Z o 1(|A R .z RTAA>e) R, (2.19)
cemsl | TR tn temel D t’t n "t°tn n
L3
: and using the definition of ct and the conditions CN1 and DN1 we
j:::.'f have that for a given §>0, there is an n, such that for n>n, and all ¢t, )
B] m+lstsn,
i T 13T Te-8 e
e E ctctl[‘x RITCe8eR A >e} <3$ (2.20)
(, for 8=BO. Again using CN1 and DNl there exists an n such that
,.:" ]R;Iij(so)l < kn! for nzn,; i,j=1,...r, and for some constant k. Let
,\:_‘. ’
’::-:: n' = max (no,nl). Then from (2.19) and (2.20) we have for B=80 and for
3 nzn'
T n |
Q"-‘ >
e I oElEl, 1(E,1 >0 < kLK) 6, (2.21)
-.*“.: t=n
.‘\_.:‘
AN where K(A,k) is a constant depending on X and k but independent of n.
{
R On the other hand, using CN1, DNl and (2.19) it follows at once that
o for g=g"
Ch )
;.‘-: n )
AN
. Z E{gtnl(lgm] >e)} >0 (2.22)
J t=m+1
*:'_:;:j as n + », Using Chebyshev's inequality, (2.21) and (2.22) now implies
_:::::: (i), and the proof is completed. ||
Ot
2 The matrix R corresponds to the number of observations in the
=
b statement of Theorem 3.2 of T1. In the stationary ergodic case
A a.s.
:':::}. n'an > R and n~ T > Uasn >« where U and R are given by (3.6)
6_ and condition D1 of T1, and it is scen that (2.10) reduces to (3.18)
X
_.::.: of Tl then. However, in the nonstationary case we do not require
"y - -
:-:'.':: the convergence of n an and n 1Tn, and in fact for the examples to
n:\-’.
0. be treated in the next section these quantities do not always converge.
vt
o)
v
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o 9 ~
éi; If Tn-Una;s.O, where Un=E(Tn), then the asymptotic covariance matrix :
o of gn is given by U;anU;l, which tends to zero by Theorem 2.1.

5:2 3. Examples

;15 As in Tl we will illustratc our general results on a variety

L.

of nonlinear time series classes. The technical difficulties are
larger than in the stationary ergodic case, and, partly to display
“E the essential elements involved more clearly, we will confine our-

" sclves to discussing scalar first order AR type modcls. Extensions
to higher order and vector models will be relatively straightforward

in some of the cases. As for the examples in Tl we will generally

omit the superscript 0 for the true value of the parameters.

3.1 Threshold autoregressive processes.

L L A
e et

These models were originally introduced by Tong (1977) in

S0
NN

connection with the analysis of river flow data. The underlying
idea is a piecewise linearization of the model by introduction of
g a local threshold dependence on the amplitude Xt' In the nomen-
clature of Tong and Lim (1980) a scalar SETAR (m,p,...,p) model is
given by

X, - E a?X . = ej (3.1)
t i=1 1 t-1 t

T .
-1""’Xt-p] € Fj,J—l,...,m, where F,,...,

- for [Xt F_ are d1;]01nt
regions of the p-dimensional Euclidean space Rp, such thatjgle=Rp.

4.0 0 #_

Moreover, {e%}, j=1,...,m, are independent white noise series

{100 0

consisting of independent identically distributed (iid) variables.

.

Tong and Lim (1980) consider the numerical evaluation of

x maximum likclihood estimates of the paramcters of the threshold ;
. . ]
G model. In a reply to the discussion of thcir paper they also mention !
o a

n“ ».
o :
. ]
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the possibility of applying the theory of Klimko and Nelson (1978)

to study the properties of these estimates, but we are not aware of
any actual work in this direction.

We will only treat the first order AR case (p=1 in (3.1)),
and we will assume that there is only one residual process {et}
consisting of zero-mean iid random variables. We can then write
(3.1) as

T
Xt - Z a Xt

H(X ) = (3.2)
j=1

jot-1 t

where this equation is supposed to hold for t>2 with X1 as an initial
variable, and where Hj(xt-1)= 1(Xt__1 € Fj)’ 1(-) being the indicator
function. There is no explicit time dependence in (3.1) and (3.2).
The reason that we did not treat such processes in connection with
our study of stationary processcs in Tl, is that we have not been
able to prove the existence of an invariant stationary distribution
for the initial variables in the threshold case (cf. Sec. 4.1 of T1).

For a general initial variable X, it is clear that the process

1
generated by (3.2) will be nonstationary.
Theorem 3.1: Let {Xt} be defined by (3.2). Assume that the threshold

regions Fj are such that there exist constants aj>0 so that for all

t, E{XiHj(Xt)} z_aj, j=1,...,m. Moreover, assume that |a’| < 1,

j=1,...,m, E(Xi) < o and E(e:) < =, Then there exists a strongly
consistent sequence of estimators {;n} = {[;i,...,;:]T} for
a=[al,..,am]T These estimates are obtained by minimizing the penalty
function Qn of (2.2), and they are jointly asymptotically normal.
Proof: The system of equations BQn/aaj=0,j=1,...,m, is linear in

al,...,am, and it is easily verified that Qn is minimized by taking
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i;’, n 1 x
X No XX By ) g
":: aJ o t=2 ) (3.3 -
s n n 2 -3)

N L XD L H(X D) -
N t=2 t 1 J t 1 ‘r.
DN ) r
9 where this exists with probability one since E{XtHj (Xt)} >a.. .
a .I d
::‘.:f Using (3.2) and the independence of the et's we have )
oy ~ m . oX ]
e j tIt-l -
X =) a’Xx, H.(X_ ) and . = X, (H.(X,_ .), (3.4) 7
% tlt-1 PR S N t-1"5 " t-1 :

while higher order derivatives arc zcro. Also, it is casily shown

)
{ > 2, X 2 2 .. y 3 .
P~ that 104 = E (XX pp ) |Fe_q} = E(ep) = o”. Since By |¢.1/%8 ;
: does not depend on ak, k=1,...,m, it follows that CN2 and CN4 of :-
; Theorem 2.1 are trivially fulfilled. Moreover, using |a’| < 1, ]
by
. j=1,...,m, E(Xf) < o and E(ei) < o, it follows from (3.2) that E(Xi)<K >
R - ~
for some constant K, and that CNl1 of Theorem 2.1 holds. N
."' .
bk From the special structure of the derivatives given in (3.4) )
A
we have that the matrix A" in (2.3) in the present case is a diagonal f,
w matrix and is given by S.
n 192 :
. AT = dlag{ﬁz Xe 1My (X )3 (3.5) b
t=2 -
:,',5 and using the assumption E{XiHj (Xt)} > o we have that CN3 of Theorem N
- 2.1 will be fulfilled if we can prove that ;
® n n a.s. -
g 1 2 1 2 -
i~ = 2_ XHs (X)) - rT.Z E{xtuj(xt)} - 0 (3.6) -
. t=1 j=1 -
A, :
pne for j=1,...,m. This will also be the key relationship used in the N
W
A ]
L proof of asymptotic normality. g
:::: I'rom the strong law of large numbers we have :'
o n a.s. K
o —1-2 e? >+ 0 (3.7) o
n t
. t=1
z
e
L]
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as n > <, Since Hi(xt)”j(xt) = Sini(Xt), it follows from (3.2)

t

o that

<. = -

ep T X2l XX gHy X p o+ T @O H ). (3.8)

- j=1 Jj=1

-{j Again inserting from (3.2) we have )
= L T 322 L

e .Z XX My (K ) '.Z (@)X 15X y) = et.z XMy (X)) £ U (3.9)

Ny j=1 j=1 j=1

- However, it is easily checked that {Ut} is a martingale difference

—-1'. m . 2

N sequence with respect to {Fx}, and since E(Uz) = o%E[{ ¥ alx_ H.(x_ )} IsK

._-I. t t \j=1 t-1 ] t-1 1

;-’ for some constant Kl’ it follows from the strong law for martingales

g _n  a.s.

o (Stout, 1974, Th. 3.3.8) that n"') U > 0. Inserted in (3.7) and

A t=2

e (3.8) this yields

; n nom . a.s.
( Ly Ly J @2 wx, ) -0® 5 o (3.10)

)0 no,t nt=2j=1 t-1j "t-1 R
e 5 1.2 a.s.

Ay Since E(Xn) < K for all n, we have n anj(Xn) + 0 as n » o for

T

.) j=1,...,m. Furthermore, since 1 = Z Hj(xt)’ an alternative way of

j=1

E; writing (3.10) is

75; m i n a.s.

e ] 1-ahH Ly XH. (X)) - ot & 0. (3.11)

. le t=1 -

.;; On the other hand, since E(Ut) = 0 in (3.9), taking expectations in

'§; (3.8) and (3.9) and adjusting the summation index as above we have

° n o on

- ¥ {1-(a1)2}1;2 E{XiH.(Xt)} -t 0 (3.12)

.l j=1 t=1 ]

o as n » ©, Combining (3.11) and (3.12) it follows that

‘s m . n n m . a.s.

y 2,1 2 1 2 j.2

0 Y (- M= Y XM (x)-= Y E(XH, (x )1 A Y (1-@@))%M._» 0 (3.13)

:3 j=1 n.2a t)t n.2 t) t :J=1 jn

i)

oy The zero-mean random variables an, j=1,...,m are linearly independent
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for each fixed n. Since by assumption laJl <1 for j=1,...,m, the -
. relationship (3.6) follows from (3.13), and this proves the consistency -
o 9
A part of the theorem. :
-, . "f
Turning now to the proof of asymptotic normality, it is not X
[
y - difficult to verify that the matrix Rn defined in (2.8) in the iy,
?f present case is given by Ci
2 2 diaol 3 E(X2 . 2
R =0" diag[ Z E Xt—IHj(Xt—l’ 1, (3.14) ]
- t=2 -
.:: s . :":
N and using the assumption E{Xt 1 J( t_l)} i_aj for j=1,...,m it 2
.- N
k- follows at once that DN1 of Theorem 2.2 is fulfilled. Moreover, the
=" .
.! matrix in DN2 is seen to be given by N
= - n ] ~
X T efx2 H. (X )
.. 1 £=2 t7t-1 " t-1 -:'
- D= = diag . (3.15) ~
- o n
b 2 [ ]
{ E{} XJ H.(X ;)
; £=2 t-13""t-1 N
® L ] g
= Since E(ei) <wand |al] <1, j=1,...,m, there exists a K, such that ;:
N E{x: 1Hj(X )} < K for all j and t, and thus, using that e, is indepen- -
~ .
g dent of F _y» e have E[{et -1 J( 1)} ] <K E(e ). From the mart- -
- .
:: ingale strong law applied to the martingale difference sequence Y
2,2 2 2 . »
@ - :
b {etxt-lHJ( £-1) Hj(xt-l)} it follows that ~
.-.: :d
t." n 2 N a.s.
.- lz 2 o] 2
= H.(X, ;) - =) X (X ) > 0. (3.16)
f: n.2, t -17j "t-1 n2 t-1
‘, Using (3.6) and an addition-subtraction argument in (3.15) it follows
- a.s.
- that D > I_as n >, and thus from Theorem 2.2
@
.
/.
‘.
N
@
e

"‘

o
a

L

a

g

a

a




p=2 tH 0t R d

L i -
icag diag - : 1 (ap-a) » N, 1.} (3.17)
O 3

No of 1 B ;0 _pH

.:,\-_ t=2 J

'.':-.'

~ It should be noted that we have asymptotic independence of the
_-::',- estimates arJ\’ j=1,...,m, in the sense that the asymptotic covariance
. -.\-‘

.i:f matrix is diagonal. Moreover, taking (3.6) into consideration it is

-~

-2
' seen that (3.17) may be rewritten as
- iae (LT ¥ E(X2 112 d

=3 diag (5 [tzzs Xe 1My X p) 19 » No,1) (3.18)
= d

o . <9 ! .

Sty which reduces to the familiar formula {nE(Xi) }/2/0 + N(0,1) in the

.3

2_.‘ ordinary (m=1) stationary AR(1l) case.

-~
o

e The conditions stated in the theorem can be relaxed. For example
\-.';: it is not necessary to require that the et‘s are identically distributed. .

It is not difficult to check that the above proof applies to the case

_-'x where the et's are independent and zero-mean, and where miE(ei)iM

?’\ and E(ei)i M' for some positive constants m, M and M'. It should also

_ be noted that a similar nonstationary generalization can be made for

_" the exponential autoregressive model treated in Section 4.1 of TI1.

fgf The condition E{X;H,(X))> a; will be satisfied if the regions

.’ are chosen so that P (Xt € Fj) > Yj > 0 for some positive constants !
}_E Yl""’Ym’ and where P (Xt=0) #P (Xt € Fjo) with FJ.O being the region !
_ containing 0. As an example where such conditions are satisfied .
_’_-:;_ consider the casec where {Xl’ez’CS""} are iid standard normal, where ‘
therc are only two regions F,= {x: x<0} and F2= {x: x>0}, and C
where a1=0 and az=‘/2. Then P (thO) > 15, while P (Xt<0) > y for some i
.—'- v>0, since E(Xi) is uniformly bounded in t.
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e
ﬁ.} 3.2 Random coefficient autoregressive processes,
\ ¢ These processes were treated in considerable generality in the
‘\¥ stationary case in Sections 4.2 and 6 of Tl. Here we will restrict
-
Sﬁ- ourselves to a scalar first order model. Extension to higher order
. vector models involves the same principles, but is notationally more 1
N
o
o complex.
4%2 We assume that {Xt} is given on -o<t<we by
ey X, - (asb) X, = e (3.19)
."-
. where {et} and {bt} are zero-mean independent processes each consisting K
:{: of independent variables such that m ilE(ei) 5-M1 and E(bi) f.Mz’
!i where ml’Ml and M, are positive constants such that az+M2<1. These
ib conditions guarantee that there exists a F:VFi - measurable solution
S
o).
o of (3.19) with uniformly bounded second moments. This solution can
2"
{ be expressed as ‘
’-
-:‘:.: oo »,
o Xe =.Zoatiet-i (3.20) .
X3 i-1 = d
A . . R efinition a =1. v
) with a H_ (a bt-J) and where by definition +0
258 j=0
. We consider the problem of estimating the parameter a. Since ;
Q.( Ry
-"p -~
> = it i T i nique solution to
f:i Xt[t—l axt-l’ it is clear that there is a uniqu uti :
® ~ n no,
Sl 3Q /3a = 0 with Q_ as in (2.2), namely a_ = () X X, .)/(} X{ ,) assuming
o n n no .ot t-1 £=2 1-1
ﬁ: that observations (Xl""’Xn) are available. It is our task to find
N
Ay the properties of this estimate.
KN
‘!. Theorem 3.2: Let {xt} be as above. If in addition E(Xi) < K for some
Ny s 0L z
" A
-5 constant K, then a_ - a.
'is n
‘ol
ﬁ;: Proof: It is easily seen that
.
0.
X 2, X 2
T ftlt_l= E{(Xt'xtlt-l) |Ft_1} = h. Xl * & (3.21) .
S
L
e e T NN SRS VOSARARA VA YA
IR : NN INGRERS
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where ht = h(ht) and g, -~ h;ct). Thus
’nxt.t 1\> ‘ N :
L e = Fi{Y\~ u . 39
E N ‘ tt!t-l} BN e N+ 8y) (3.22)

) J

is uniformly bounded in t and (N1 of Theorem 2.1 is satisfied. The

conditions CN2 and CN4 are trivially satisfied since 3X /da=X

t]t-1 t-1

is independent of a. It remains to check CN3. This can be done using
martingale techniques analogous to those used in the proof of Theorem 3.1.
2 2

+e ) -(h XD ) + g}

7 =
From (3.21) we have that {Wt} {(btxt_1 R R

is a martingale difference sequence with respect to {F:}. Using our
independence assumptions and the fact that uniform boundedness of E(Xi)
implies uniform boundedness of E(bi) and E(ei) we have

2 4. 4 2 4 2.4 2
E(W,) = E(b))E(X, ;) + 4h g E(X, ;) + E(ep) - hiE(X{ |) - g; < K (3.23)

for some constant Kl. From the martingale strong law we have

n a.s.

-1 . -

n tzzwt >0 as n > =, and thus, since b X, , + e = X -aX , we have
n n 2 n n

1 z 2 2a a 2 1 2 n a.s.

Sy X-28Y XX, L, +—J) X, -=JhX o -1

nZ,t o mg,t't-l Tn S 0t-17 n Z et E{Ezgt + 0. (3.24)

On the other hand, {Vt} = Z(Xt-x )Xt_l} also forms a martingale

t]t-1
difference sequence with respect to {F:} with E(Vg) < C, for some

constant C2 and thus

n 2 .
Yx., * 0 (3.25)

a.s.
-1.2
Since E(Xi) is uniformly bounded, wc have n Xn + 0 as n > o, and

combining (3.24) and (3.25) it follows that

2
(1-a )%

n n .
2 1 2 1
R Xe-1 51 heXeerm o Z 8y > O

2 t=2 t

0o~z

% x5 S

-y~
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Here h 20 and la] < 1. Hence

n 5 . n m
lin inf 2 ) X2 > (1-a”)"'lim inf -} g > —15 (3.26)

; n -»-oo “t=2 n > o t=2 1-a !

N and because axtlt_l/aa = Xt—l’ this shows that CN3 of Theorem 2.1 is y

. fulfilled and the theorem is proved. ||

PLERNS

It should be noted (cf. Theorem 4.2 of Tl) that in the stationary

0
g

~

2
case E{Xt} < o was sufficient to guarantee strong consistency of a..

f,'."t."l.' y

The condition E(Xi) < K used in the present theorem will be satisfied if

. 4 4 l
S E(e,)<C, and E{(a + b.) } < C, <1 for two constants C, and C,. It j

was needed to obtain a uniform bound on E(Wi) in (3.23). Using

~: Corollary 3.3.5 of Stout (1974) it is possible to weaken this to requiring
37 .
5O a uniform upper bound on E{lwt|(10g+|wt|)1+€} for some € > 0. .
& »

As can be expected by analogy with the stationary case treated
in T1, boundedness conditions on higher order moments are needed to
ensure asymptotic normality.

Theorem 3.3: Let {Xt} be as in Theorem 3.2. If in addition E(eg) < C

1
and E{(a+ bt)s} <G,y < 1 for two constants C1 and C2, then a_ is
4

. asymptotically normal.
ig Proof: Using (3.22) it is seen that the quantity Rn of (2.8) is
A given by 1
n n 2 2 .
- R =£2E{xt_1(htxt_1 +g)lh (3.27) \

.I .I
.

In view of (3.20) we have gtE(Xi_l) z_gtE(ei_l) = gi z_mf, and it

®
(SR

4

follows that DN1 of Theorem 2.2 is fulfilled.
o4 Employing a subtraction-addition argument and the definition of
® the quantities used in DN2 it is clear that DN2 will be fulfilled if

we can show that

&
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n n
2 1 2 2 a.s
- = 37
Z X2 (b X, | e ntéf“‘t-l (h,X;_,+ g} “%70 (3.28)
A This will be done in several steps.
f:k: First observe that the stated moment conditions on et and b
Yty
i)
) imply by (3.20) that E(Xi) f-Kl for some constant Kl' Clearly
e {thetXt 1} is a martingale difference sequence with respect to
,.e
_ﬁ:j {Fi }, and since E(Xi-l) <K, for some K, it follows from the
- martingale strong law that
. n a.s
o l 3 :
:..::;.._: S leXx’ | > 0. (3.29)
Ay t=2
%:%: Similarly {X2 (ez-g }} and {X4 (bz-h )} define martingale difference
'..'-' t-1""t =t t-1""t 't
:i? sequences and using E(Xi)_ﬁ Kl and the martingale strong law we have
M.
n\_-
n n a.s.
lz 2 2 1 2 :
— )X el -=) X g+ 0 (3.30) )
nt=2 t-1"t nt=2 t-1°t
e and .
v 17,4 2 1% .4 s
=) X b —Z h, > o. (3.31)
nC,t-1t co t-10E
Inserting (3.29) - (3.31) in (3.28) it is seen that to prove (3.28)
:Ef it is sufficient to prove
2 n a.s.
OO 1 2 2
N HZ X¢q - B e ~ 0 (3.32)
® t=2
EAED and
-l
RO n a.s.
: 1 4 4
= Zz{ e - Bty > 0 (3.33)
v Let Y = {Xi - E(Xi)}u,c where {ut} is a positive deterministic
sequence bounded above by some constant k and consider the sequence of
: O-fields {Ft, - < t < =}, where Fe = FZVF:. We will prove that
. {Yt} is a mixingale difference sequence with respect to {Ft}, i.e.
s
N
SN
WA
W

AN - -‘#‘e\"."
. e
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(cf. Hall and Heyde 1980, p. 19) that for sequences of non-negative ;
constants ct and wi, where ws + (0 as s > o, we have g
2 22 _ ;
ELEEQY JF,_)17)< viey (3.341) 2
and !
.2 iy ]
LY -E(Y [F,,O}] < S+1 N (3.34ii)
for all t 21 and s > 0. Since Yt is Ft—measurable, the condition (ii)
in the definition of a mixingale is trivially fulfilled for any choice !
of N and ws. R
Using (3.20) and independence properties we have .
® -1
2 1- 2
B(X,) = Z E(atl)gt ;=1 [ ElGa + b, _5) He, 5 (3.35) |
=0 i=0 j=0 o
and for s > 0 b
2' 921[1 -1 © o :;
E(XIF _g) = I Ef(a + b, ) }]g +§ Y E(a_.a__|F_ e .e . (3.36) ]
t i=0 j=0 t- i=s j=s titj' t-s’ Tt-i7t-j -
However, for i,j 2s we have "
i-1 j-1 s-1 2 it
E(atlat IF _) =T (avb, ) T (ash, IE{ T (asb, )%} (3.37) "
k=s i-1 m=s k=0
where by definition 1 (asb_,) =1 for 5=i. Combining (3.35 - 3.37) we :
k=s !
obtain by
| | | | s-1 C z § i-1 j-1 \
ECY |F, )| = |uE{ Tl (a+b ) } il (a+b ) H (a b, e, .e .
t' t-s t k=0 i=s j=s k=s ~k‘m t-m” t-i t-j 1
% At 2. 51,02 2
- Y E( T (asb, ) }g (2 k@M THXS -E(X]_ )Y (3.38) -
. t-k - 2 t-s t-s y
i=s k=s X
. 4 2 . . . &
and since E(Xt) <K and a +M2<1 it follows that {Yt} is a mixingale )
difference sequence. Moreover, it follows from the mixingale convergence -
theorem (Hall and Heyde 1980, Th. 2.21) that (3.32) holds by choosing .
Yt T Brar- !
4
\
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Next let . = {Xt

a mixingale difference sequence.
nition of a mixingale sequence is trivially fulfilled.

and independence properties we have for s

s-1 s-1 s-1
ECGIF, 0 =1 1 ]
i.=0 i.=0 i.=0
4 27V 13
o0 Qo o oo
IZ=€ iZ=s z=s 'z= E(atilati2
17> 127° 1375 1y

s-1 o 3 3
#3 1 1 E(eg ;) E(
11-0 14—5

- E(Xi)}ut.

20

s-1

z E(a ti

14—0 1

i 2 IFt
igti, -

coa,. |

1 13 tl4 t

ac; IFy

We will show that {Zt’Ft} defines

Again the condition (ii) in the defi-

Using (3.20)

2 0

1y -1, t-1p t-1,
e .
t-13 t-14
). (3.39)
4 -

x4 Sil Sil bil §—1
E(X)) = E(a_, .a,.a,.e .e .,e_ .e .)
t 120 i.=0 i.=0 1i.=0 tl1 t12 t1 t14 t-ll t-lz t—13 t:-;l.4
1 2 3 4
(o] (o] o0 0
+) 1 1 } B3y 35 3¢i i ®t-i. ®t-i ®t-i.Ct-i)
i,=s i.=s i_=s . 1 2 3 4 1 2 3 4
1 2 3 i, =s
4
+ 3 z z g, . £, . E(a2 a2 ) (3.40)
. t-i, “t-1i ti,"ti,’ ’
=0 i, = 1 4 1 4
4 4
Since for 1 2, z_s, we have that
AN RN AL AT IO "'\ B 'k' IR '\.\ .‘- "- A AN T e ""\"'-':‘-':‘ . Ll
S * ALt -~ . -‘.'.d. f ‘- ", ,. .. \ ..~ ":\-" ‘. At e -'.ﬁ .
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l 4 1r—1 s-1 4]
E(a,. a,. a_.a_, {F. ) =1 T (a+b_ . )r E{ T (a+b, .) (3.41)
ti Tti, i e st i=s t-j_ jeo to |
it follows that
) ) ) z E(a,, a_.a_. |F. )e e, .
I S o _ ti“ti, ti, P t-s’ t-i, t-i, t-i, tei
ij=s 1, S 1,=5 14 S 4 1 2 3 4
s-1
_ 4y 4 s/2 4
= E i1=10(a+bt_j) Xeog £ €77 XL g (3.42)
’ J
Similarly for i1 < s-1 and 13, i4 > s we have
, | 13-1 14-1 11-1 . s-1 2\
E(a,. a_. a_. [F, ) = I (as+b_ ) T (a+b, JE{ Il (a+b,_ .)° T (a+b_ .)
t11 t13 t14 t-s j=s t-) j=s t-) j=0 t-] j=il t-]
and
; 14-1 11-1 . s-1
E(ay; a,; IFe Q) =1 (asby JEL T (ash, )7 T (ashy ) (3.44)
1 74 i=s J=0 J=1y
It follows that
s-1 © Sl
. 2
! ! g_; EQ IF. e, . e
120 i =s i=s 1 th tig th t-1g t-ly
i =1
s-1 1 s-1
_ 4 21 2 s/4,2
=) g_; E{ 1 (a+b, )" T (asby )7p X o < MsCy X, (3.45)
i, =0 1 }3=0 j=1
1 1
Moreover, since lE(ei)I < Mg for some constant M,
s-1 ®
3 3
!.X 1 Ble ;) E(ay; ag IFy Jep g
=0 i,=s 1 1 74 4
1 4
s-1 ot 4 5-1 s/8
= ) E(e] . ) E T (asb, )7 T (a+b, )} X < MsC [x, | (3.46)
. t-1 . t-3] .. t-) t-s t-s
i.=0 1 j =0 j= 1
1 1
) .'_\'.:J‘ XA ARty e e e o e L e o (o I e e ottt

(3.43)
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Reasoning in an entirely analagous way for the two last terms on the

right hand side of (3.40) and inserting in (3.39) and (3.40) we have

) s/2, .4 L A
IE(zt]Ft_S\ < ut[c2 {)(t_S + L(Xt_s)}
s/4,.2 2 S/8y.
+# MpsCOUHXD o+ B(XE_ )+ MsCD ]xt_sl] (3.47)

Since u < Kk, E(X?) < K; and C2 < 1, it follows from the mixingale

1

convergence theorem with ut=ht+ that (3.33) holds, and the theorem

1
is proved. ||

Again it should be noted that in the stationary case (T1, Th. 4.3)

4 - . . o

E(Xt) < o is sufficient to guarantee asymptotic normality of 2,

. . . 8
while in the present case we require E(X.) < K.

3.3 Doubly stochastic processes.

Random coefficient autoregressive processes are special cases
of what we have termed doubly stochastic time series models in Tjgstheim
(1983, 1984b). In the simplest first order case these are given by

Xp = 9% * & (3.48)

where {a+ bt} of (3.19) now is replaced by a more general stochastic
process {et}. The process {et} is usually assumed to be independent
of {ot} and to be generatcd hy a separate mechanism. Thus {et} could
be a Markov chain or it could itself be an AR process. We refer to
Tjdstheim (1983, 1984b) for a definition and properties in the general
casc,

What makes doubly stochastic processes especially interesting,

is that in many cases it is possible to construct reccursive forecasting

algorithms, and for the case wherc {et} is an ARMA process, there is

a close connection with Kalman typc dynamical state spacc models

-
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(cf. Harrison and Stevens 1976, Ledolter 1981 and Tjdstheim 1983).
This type of processes has attracted considerable attention lately,
and there exist procedures (see e.g. Ledolter 1981) for computation
of unknown parameters, but as far as we know there are no results
available concerning the properties of these estimates.

We will only consider a very special case, namely the case where
{Bt} is a first order MA process given by

B, =a+€_+bD (3.49)

t t " %1
where {Et} consists of zero-mean iid random variables independent of
. 2 .
{et} and with E(et) < o, Both {et} and {et} will be assumed to be
defined on -» < t< o, We will only consider the estimation of a,
but we believe that even this simple problem gives a good illustration
of the increase in difficulties as we move away from random coefficient

autoregressive processes.

To be able to construct Kalman-like algorithms for the predictor

tht—l’
(Tjgstheim 1983) that {et} and {Et} be Gaussian, and that there is an

the process {Xt} must be conditional Gaussian and this requires

initial variable X, such that the conditional distribution of 00

0
given X0 is Gaussian. This last requirement is achieved here by
choosing X0 = 0. Obviously it implies that {Xt} is nonstationary.

Theorem 3.4: Let {X , t>1} be given by (3.48) and (3.49) under the
above stated assumptions. Assume that E(Xi) < K for some constant K,

and that the MA parameter b is less than 1/2 in absolute value. Then
~ a.5.

there exists a sequence of estimators {an} such that a, * aas

~

n»o, and such that a_ is obtained by minimization of Qn in (2.2) as

described in the conclusion of Theorem 2.1.
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Proof: We follow Tjgstheim (1983) and use the notation mt=E(bet|F§) and
Yy = E{bet—mt)lei}. Then it is casily shown from (3.48) and (3.49)

that under the stated assumptions we have

Xt]t-l

Moreover, it was shown in Tjgstheim (1983) that X

= {(a + mt-l)xt~1' (3.50)

~

tlt—l can be obtained

recursively from the relations

2
8 bX, j (Xp-aX, g-me X 1y

m, = (3.51)
t 2 2 2
o * Xt-l(é * Yt-l)
with 2 4 2
2,2 X 18D
y. = b2s’- (3.52)
t 0% + X2 (62 + Y )
t-1 t-1

for t > 1. Here §% = E(ei) and 02 = E(ei), while m0=E(b ct) = 0 and

. .
---------

Yy = E(bzei) = hzéz. It follows that the conditional prediction error is given by
_ N 21X 2 2 2
Felea1” E{(Xt’xtlt-l) Fegd = (67 + Ve Xep 0 (339
From (3.50) and (3.51) we have
oX am
ele-l . [1 . t'l] X, (3.58)
aa da
and, since Yt is independent of a,
am
; szxi_l ]+ —t-1
Me da
- . ) (3.55)
2 2
2
da 0% + Xt_l(é + Yt-J)
while for k > 2
Mo e A R S e I L
N -.‘-.'\' N “. .' _\. AN Y \_-. .
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Bkm
2px2 i
k 8
9 mt t-1 aak’l
= - =0 (3.56)
k ) 2 )
da o° + Xt_l(é + Yt-l)

due to the initial condition m0=0. (It is also seen directly from
(3.51) that m depends linearly on a). It follows that CN2 and CN4
of Theorem 2.1 are trivially fulfilled.

Since Yy 1-3 0 we have from (3.55) and the summation formula for

a finite geometric series that

om om t
5_3. < |bl {1 + t-114 Ib] l_:_lhl_ , (3.57)
a | — =
da 1 - |b]

and it follows that ('amt /3a| is uniformly bounded. Similarly it

follows from (3.52) that y_ < 2b262. Using (3.53) and (3.54) it is now
t —

seen that the condition E(Xi) < K implies that CNl1 of Theorem 2.1 is
fulfilled.
Since we assume that lbl < %, we have by (3.57) that

am, /3a] < [b] /(1-]b)<1 and thus lim inf (1 + 3m /32)°>0. From

t >

(3.54) and the form of CN3 it is clear that to prove that CN3 holds,

it will be sufficient to prove that

1 n 2 a.s.
lim inf — ixt > 0. (3.58)
n e t=1

Note that with our initial condion X0=0 we have

t-1
X, =) a_.e_ . 3.59
t 2 t1 t-1 ( )
i=0
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where

-1 i-1

ati = E et_j =j§0(a + Et-j + bEt-j-l) (3.60)
with a_=1. Tt follows at once that E(Xi) > 6%, and thus (3.58) will

be proved if we can prove that

a.s.

E(Xi) > 0. (3.61)
1

=X
N ~13

2
Xt

1
1 Ne

W~

t

This will be done by using the mixingale strong law of large numbers.

2 2 e €
= - = \" i -
Let Yt Xt E(Xt) and Ft Ft Ft' Then, Yt is Ft measurable

and condition (3.34ii) in the definition of a mixingale difference
sequence is trivially fulfilled. Moreover, we have from (3.59) and

independence properties that for s > 0

1 t

2 2] S% 2 1
E(X)) =0 iZO E(a,,) +

P E(aii) , (3.62)
1=S

where, by definition, the first sum is zero for s=0. It is not difficult

to show that

2 2s-l 2 t-1
E(thFt_s) =0 iz E(ag;) + ZizoE(a )

.a_ e _|F
0 ti1 ts t—ll t-s et—s

til . til l
+ E(a,.a,.|F, e, .e_ .. (3.63)
issel josel ti“tj' t-s’ t-i t-j
For i < s we have
E{atiatset-ilFt-s} = E[E{atiatset-iIFt-i-l}lFt-s]' (3.64)
But
s-1 1 a.s.

i-
=(m e, _oE{m

2
j:i+1 j J=Oet_j)(a+e .+b

e-itPf i i Feoiar = 0 (3.08)
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On the other hand for i = s

i-1 §=2 2 2
E{atiatset—i|Ft-s} = et_i(jgset_:.}E J(I=IO Gt_j)(a+et_s+l+bs:t_5) |Ft-s

1-1 [ 2 2 2 s-2 , s-2 ;.

. =e .(N8 )la“+2abe, _+b%e”  JE( N 6% )+2(a+be, IE{ (T 68, .)e g
t-it gt '_ t-s t-s j=0 £ t-sT7) Cily t-3 tesHl ]

L X

s-2 5 i-1 r:'.l

T B , . L
$EIOT O Ove ] Ao IO Kt (3.00) "
=0 ’

and hence \’
1

) E(atiatset-i IFt-s)et-s - et-sxt-sK(t’s)' (3.67) .
i=0 -
Using similar arguments it is not difficult to show that E:jl
til t-z-l | ) r
E(a_.a_.|F. e, .e_ . = X_ K(t,s) (3.68) 4

i=s+l j=s+l t1 t) t-s” t-1t-j3 t-s :{
-

Inserting in (3.62) and (3.63) we have "
E(Y |F, ) = E(XZIF ) - ECXY) = (2e, X, _+X° JK(t,s) i
t' t-s t' t-s t t-s t-s “t-s ’ -

, | s=l, toli-1 -

- o®E{( T et_j).g (.g et_j) . (3.69) -

j=0 i=s j=s »

Since E(XZ) < l(l for some Kl’ it follows from the proof of Theorem 4.2 \3
t $=-2 N

of Tjgstheim (1983) that there is a positive g<l such that E( I 912_'_].) \?
j=0 o

s-1 4 !—<
=0(g” 7). Since E(X,) < K implies the existence of constants K, and K, s
such that E(e:) < K2 and E(C:) 2 K3, it follows from (3.66) and (3.69) ‘;
s

that E[{E(YtlFt_s)}z] = O(gz(s’l)). We then have from the mixingale ;:‘
convergence theorem (Hall and Heyde 1980, Th. 2.21) that (3.61) holds 52:
and the theorem is proved. || ;,,:
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The condition DN2 of Theorem 2.2 is not easy to work with for the
present example and we have not ventured to prove asymptotic normality.

3.4 Autoregressive models with deterministic time varying coefficients

Autoregressive models with deterministic time varying coefficients
have found applications in several areas, in particular in speech
recognition (cf. Markel and Gray 1977}, and it is of intercst to
develop a theory of inference for them. To our knowledge such a theory
is largely nonexistent. These models are usually classified as linear
nonstationary models so in a sense they fall outside the scope of this
paper. However, we will show that at least in special cases it is
possible to use the theoretical framework developed in this paper to
obtain properties of parameter estimates.

We only look at a first order model, although this is not an

essential restriction, and we assume that {Xt} is given for all t by

- = (
Xt a(t,on)xt_1 €, (3.70)

o2,

where {et} consists of zero-mean iid variables with E(ei)
and where a(-,a) is a deterministic function depending on a scalar
parameter o.. In this subsection we will use the superscript 0 to denote
the true value of o.

Theorem 3.5: Let {Xt} be given by (3.70), where a(t,a) is three times
continuously differentiable in an open set A containing the true value
ao of a. Assume that E(ei) < «, and that there exist positive constants

m, M and g with g<l such that for all t

0 sa(t, ao)
la(t,a’) | < g and >m (3.71)

aa
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X and such that . e
i
da (t,a) ®
— ] <M (3.72) !
: 3 A
-: :“
. ‘\,
. for all t, a € A and i=0,1,2 and 3. W,
, Then there exists a sequence of estimators {an} such that 9
5 -
[- A a.s. o ~ kN
n T % and such that a is obtained by minimization of Qn in (2.2) Y
S as described in the conclusion of Theorem 2.1. Moreover, o is .
+§3 asymptotically normal. o
.

T

-e"0 s
o

Proof: Using (3.72) we can express {Xt} as a mean square and almost

LI

sure convergent expansion

. | v 4
P A

% J N

by >
X, = 1 a e (3.73) e
7 i=0 S
. i-1 o~
29 » -
> with at0=1 and a,,= N a(t-j,a) for i > 0. Moreover, it follows from R
X 5=0
1 9
- (3.71) and the mutual independence of the et's that :'.‘:‘
‘ o0 F:S
2 2 2 s
E(X)) =0° ] |a N C ) A (3.74) N
- i=o T o1 -
®
- From (3.70) and (3.73) we have that L
i _ . - 2 ‘-:_
xtlt-l = a(t,OL))\t_1 and ftlt-l o] (3.75) ;:
W . i, i i i ) -
. and since 3'X |, /3 = 32’ (t,a)/B X, ), it follows from (3.72), .
j:? (3.74) and '(3.75) that CN1 and CN2 of Theorem 2.1 are fulfilled. _\';:
OR l\N.
::‘_ Considering the cxpression in CN4 of Theorem 2.1, it is seen that -
2 2
§ by the mean valuc theorem and (3.72) it is sufficient to prove o
- n a.s. : o
,' lim sup -!1; Z Xz < o (3.76) ':f
. n->o t=1 :;:'_\
!‘ s
s :
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¥
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: in order to have CN4 satisfied. On the other hand from the equality
part of (3.74) we have E(Xi).i 0%, and using (3.71) and the inequality

part of (3.74) it follows that both CN3 and CN4 of Theorem 2.1 will be
fulfilled if we can prove
a.s. . .

E(Xi) > 0. (3.77)
1

- a
1 t

o=
e~

it~

t

But for s > 0 we can use (3.73) and (3.74) to show that for Yt=Xi-E(X§)

we have

s-1

e _ 2 . 0 2 2
E(Yt]Ft_s) = igoa (t-1,07) X - E(XC_)) . (3.78)
It now follows from (3.71), (3.73) and E(ei) < ®, that there is a K

such that E(X:)_i K for all t. Hence, by (3.71) and (3.78) we have

E[{E(Yt|F:_S)}2] f_gzskl for some K , and the mixingale convergence
theorem implies (3.77). The consistency part of the theorem follows

from Theorem 2.1.

The quantity Rn defined in (2.8) and used in the proof of

asymptotic normality is given in our case by

2

n

R = o?
t=2

2

sa(t,a’)
— EX. ), (3.79)

Ja

and it follows at once from E(Xi) > o® and the last part of (3.71)

(::: that DN1 of Theorem 2.2 is fulfilled. To show that DN2 of that theorem

-:;§: holds it is clearly sufficient to show that

@

SNEN 0 0

el 1 n |da(t,a) 2 2 2 1 n |da(t,a) 2 a.s.

0N = N ] et Xi4 -5 L || E(X_) > 0 (3.80)

N " e=2] da t=2| 2o

(\r_:‘

wCar

i,.'d‘: _ 0 27 2,2 25 2 .

®. We let Zt = |da(t,a )/ 30 {etXt_1 -0 E(Xt-l) }. Then using (3.73)

.',:.',:
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L and (3.74) and independence properties of {et} it is not difficult to .
13

- show that f
5 . sact,a) |? s-2 5 !
::: B(Z,IF, ) = |—5—| © 1rzroa (t-1-i,0 ){x s~ E(XZ_ O (3.81) X
L From (3.71), (3.72) and E(X:) < K it follows that E[{E(Z [FS_)}?]
;{}: < g25M02K1 for some K, and the mixingale convergence theorem implies

- (3.80). The proof is now concluded by applying Theorem 2.2. ||
{

. It should be realized that the conditions (3.71) and (3.72) are N
‘a.: *y
!iﬁ quite restrictive. Thus it is not completely nontrivial to find .
- explicit examples of functions satisfying these requirements.

o

3‘ 3.5 Other models %
X We could of course consider nonstationary versions of bilinear 3
{

S models. But we still face the same obstacles as in the stationary

o
- case (cf. Section 4.3 of T1), and again it seems that more progress R
o .
L has to be made on the problem of invertibility before serious analysis :
f» ) .
o of estimates can be undertaken in the present framework.

-
j:; For the model studied by Aase (1983), however, our theory is
o
Yoh applicable and the conditions CN1-CN4 and DN1-DN2 results in conditions

o

fi: which are similar to his, although he considers some slightly -
Qi; different estimates. -
:i' 4. A maximum likelihood type penalty function. p
o '
'{i The maximum likelihood type penalty function was studied in Section .
. ;

) 5.1 of T1 and is given in the multivariate case as )
~ .
s n ~ ~ z .
] L= ¥ [1n{det(f )I+(X_-X el (X -X )]a ¢, (4.1) :
R no ol tit-1 t " tlt-1 tlt 1Y% ] -1 =eomel t -
e X
\}': .
3 :
M .
Q: '
» L4
(:: c.‘ V‘.— 1‘1\5% \ * ‘.f\ ‘.\\«‘.\- .\- ..‘. \‘. TR .-_-‘_ f VY, ".a.'- “- .‘;’-.-'._ o ...}v._s_- AR ‘.‘r-
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The resemblance to a Gaussian log likelihood and the martingale

property of Ln was discussed in T1. If Xt-xtlt-l is not independent

of F:-l’ minimization of Ln will in general produce estimates with
different properties from those obtained using conditional least squares
with Qn as in (2.2). This is the case for doubly stochastic time

series models and in particular for random coefficient autoregressive

series.

Corresponding to Theorem 5.1 of Tl and Theorem 2.1 of the present

paper we have

Theorem 4.1: Assume that {Xt,teI] is a d-dimensional process with

E{IXt|2} < o for tel and such that X _I(B) and f 1(B) are almost surely

t|t t]t-
twice continuously differentiable in an open set B containing BO. Moreover,
assume that there are positive constants M1 and M2 such that for
t > m+l

8¢t

ENL: E{|— (8") M

az¢t 3%¢

t 0, | £X
g, ¢ Fen

EN2: E}| —— (B")
BBiBBj BBiB j

for i,j=1,...,s, and where expressions for these derivatives

are given in (5.8) and (5.9) of TI1.

Furthermorc, we assume

n 0. 3-S-
EN3: 1lim inf Amin (R) > o

n > o

where X;in(BO) is the smallest eigenvalue of the symmetric

R O R T
RN C LA




.

a_s

[ )
(M

L

k2
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:: matrix Cn(BO) with matrix elements given by ?
.. N
n of of N
0 -1 0 lt-1 .0, -1 0,  t|t-1_.0
cfy By ] [Te{Eih, ()T £y (B y—2lLg) 1
1 " temer] | tIE 38 elt- 38 ;
v, i
o g
;::::: 3;‘:|t-1 0, -1 0 a;(tlt-l 0 4
0\ + 2 (8 )ftlt 1(6 ) (B™) 4.2) )
. 9B, - 9B, 7
o 0 . . 5
- EN4: Let NG = {B: |B-8 | < &} be contained in B. Then -3
' n 3%¢ 3%¢ a.s. )
lim sup (n6)-1 ) t® - L (BO) < @ X
n>o 840 38. 98, 3B. 3B. 4
o t=m+] Bl BJ i 8] ;
:::: :{
- for i,j = 1,...,s. .
o ~ ..
o Then there exists a sequence of estimators {Bn} minimizing L b
'5’ of (4.1) such that the conclusion of Theorem 2.1 holds. ;
Proof: As in the proof of Theorem 2.1 our proof consists in referring )
S our stated conditions back to the conditions of Theorem 2.1 of TI. '_:
3 .
:::- From Proposition 5.1 of Tl we have that {333- "F')c(} is a martingale .
\‘: i ',-‘
difference sequence, and from a version of the martingale strong law i
o (Stout 1974, Th.3.3.8) it follows from EN1 that n‘laLn(BO)/aeiaJ»S'o 0
= as n > », and Al of Theorem 2.1 of Tl is fulfilled. -
"z
® 2 0 _ 2 0 X X .
L4 The sequence {[3 ¢, (8 )/BBiSBj E{3 ¢, (8 )/38138j|Ft_1}], Ft} 5
is trivially a martingale difference sequence, and EN2 implies via the :::
- -
. just quoted law of large numbers that "
o :
o %L n 3% a.s. .
ot 1 n 0 t 0 X N
- S (B) - ) E{mme—(B)I|F, ¥ > 0. (4.3) N
o n aeiaej tom+l BBiaBj t-1 e
QS N
0 )
s v
0. On the other hand from (5.11) of T1 we have that )
~. K
o F
> '
3 ¢
Q <
N N T N L N T N e S e e e T o,
. TN P ONDOU R MU AR .
\‘} iR ) . Al AL B il
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ln 2 0 X n 0 n 0 .
i 38, |FX ) = N, : Cin 4
n Z::m-’-lE{B ¢t(B )/aBlaBJ I t'l} ClJ(B ) with C (B ) as in (4 2)

It follows from (5.12) of T1 that Cn(BO) is non-negative definite and
A2 of Theorem 2.1 of T1 now follows from EN3 and (4.3). Finally, EN4
is just a restatement of A3 of Theorem 2.1 of T1. ||

As for Theorem 2.1 the conditions ENl1 and EN2 may be weakened.

We next turn to asymptotic normality and to the analogs of Theorems

5.2 of T1 and 2.2 of the present paper. We let SA, Rﬁ and TA be the

matrices defined by

n a¢t 3¢t
t - Qt =
SR TR (4.4)
t=m+] ]
n 8¢t 3¢t
t - Tt ' =
T Tn’lJ (sn’ij) tzm+15 5§;-5§; (4.5)
and \
3¢
t X
R' =R' .. = = Z E{xs—pi— |F . (4.6)
n n,ij tomsl BBiBBj t-1

Here expressions for 8¢t/88i and E(8¢t/3853¢t/38j) are given in (5.8)
and (5.18) of Tl and for C" in (4.2).

Theorem 4.2: Assume that the conditions of Theorem 4.1 are fulfilled
and assume in addition that

FNI: 1im inf n~° det {RA(BO)} > 0

n >«
and
. 0.~ 0 ¢t a0y 1~k P
FN2: {R;(B )} s!(8 (R (B )} I.
Let {Bn} be the estimators obtained in Theorem 4.1. Then

d
vea0y 1% 20y n _a0% o
{R'(BT)}?T} (BT) (B -B") N(O,I)).
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i;; Proof: This is essentially identical to the proof of Theorem 2.1 and
(t is therefore omitted.

o :
- 5. Two examples. :
\d_ .
L . .
o In Section 6 of T1 it was seen that in the stationary case it y
\1'.

I was possible to weaken the conditions on the moments of random coefficient :
\‘\“‘

‘\j autoregressive processes when the maximum likelihood type penalty

ﬁ;j function was used. The following examples indicate that this continues

)
{ to hold true for nonstationary doubly stochastic processes. Only

N

}23 consistency will be studied, and the superscript 0 for true values will

J"-‘

i:f be dropped.
LN

o 5.1 A random coefficient autoregressive process. ;
.E:: We will study the first order model given by (3.19), but now we !
SRS

35: . will make the assumption that E(bi) =y >0 is a constant, and we will
( consider the problem of estimating both a and Y. .
e

--\ - I3 N

:jw Theorem 5.1: Let {Xt} be as in (3.19) with E(bi) = y. Assume that

:;: there exist two positive constants m, and M1 such that mLiE(ei)fM
! ) ~ A~

”- and that a’ + Y < 1. Then there exists a sequence of estimators {[an,y 1} such

.

. .' ~ A a.s. ~ ~

N that {[an, Yn]} + [a,y] and such that [an,Yn] is obtained by minimization

1\‘

&

_f; of Ln in (4.1) as described in the conclusion of Theorem 2.1.

o

v Proof: For the process treated in this theorem we have that ¢t defined

.\. ———e et .
_.:,‘J N
S in (4.1) is given by ‘
S :
e - 2 p
Ca = -
e 0 = In(fy 1 0]+ Xp = Xepeo)) /e .1
;gi where ; = aX and f = yXZ + 5, with g, = E(ez). We
L7 t]t-1 t-1 t]t-1 t-1 = ¢t t t

Cad
'it: have
het 2, .
o B S S UAT P (5.2)
.
-’.' v
Q‘."- -
'I.:'

-

.:,l.
50 $x~.-m.,'., B e A e N
"':[I."a. ..\ 0 's.-."-s N TR I Y
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e
S 3%, 1 aftlt-l 2 1 aft]t—l
e 5 T F 5y - (Xt—axt_l) > L (5.3)
-‘:-;‘:- tjt-1 ftlt-l 3y
- Here 1/ft|t-1 < l/g,c < l/ml, while
o 2
S 1 aftlt:-l - Xto1 < 1 (5.4)
e fle-r oY X2 +g — Y .
o Y t-1 t
= Using similar arguments (cf. also Section 6 of T1) it is not ’
"\ difficult to show that the expectation of the absolute values of the
.::" first and second order derivatives of cbt with respect to a and y are
\ bounded by KIE(Xi) where K1 is a constant. However, using independence
::::::. properties of {bt} and {et} it is seen from (3.20) that
-
S 2 T . < (-an
3 E(XD =] (@) g, _; ; 1 (5.5)
v i=0 > (1-a"-y) m
e - 1
:-'_:i: where we have also used az+y<1. It follows that EN1 and EN2 of
e Theorem 4.1 are fulfilled.
2
Since y>0 and a"+y<1, there cxists an open set B that contains
the true parameter vector, and is such that the closure of B in
the parameter space do not contain vy = 0 and 32 + vy =1. Using the
martingale law of large numbers it is not difficult to show that
there is a constant I(2 such that
n (btxt__1 + et)2 a.s.
lim sup — Z > < K2 {5.6)
n > o t=2 Yxt-l + gt
when a and y arc contained in B. Using this result in combination with .
N the above majorizations and with the expression for the third order
.-:-:f.': derivatives (cf. formula (6.8) of T1) we have that N4 follows from
o
D the mean value theorem.
®. It remains to check EN3, Since ftlt—l does not depend on a, while
"f-::}' - N
):'j tht 1 does not depend on Yy, then the matrix C of EN3 is given by
1-..:4 -
.';'.:: the diagonal matrix

A RN A N A N
A e T
NI NI RN

)
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n ZXt-I
5 0
t=2 Yxt—l + gt
-l - (5.7)
n 4
n X
t-1
0 ) 3 3
t=2 (Yxt-l + gt) -J

Assume that there is a subsequence indexed by n; such that as

n. > o,  then
i

1 ni ZXi_l a.s.
= ] —5—— > o. (5.8)
Teap Yy * 8

Since ZXi_l/(yxi_l + gt) < Zy‘l, we can use dominated convergence

to show 2
n
i 2X
1 . t-1
N Yy E 5 »> 0 (5.9)
i Yoy ¥ 8

as n, > «©, However, from (5.5) we have that E(Xi) is bounded uniformly

from below, and it follows that there exists a § > 0 such that

2 2 _.-1 . . .
P {Xt Z_ml(l-a -y} 7} 3_6, with m1 as in (5.5). Moreover, the ratio
2x/ (yx + gt) is monotonically increasing in x > 0, so that

2 2 -1
2Xt . 2m1(1—a -Y)

) (5.10)
2 z 2 -1 4
Yxt-l + 8¢ le(l-a -Y) + M1

for all t, where M, is as in (5.5). But this contradicts (5.9) and

1

we must have

2
n 2X a.s.
1 t-1
= 1ip inf <. —_— > 0
i n z 2

lim inf c?l
t=2 YXeop * 8

n > o N> o
a.s.

It follows using tue same argument that lim inf ng > 0, and the
n-~> oo

c wwmg s e e e p v
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1&;: condition EN3 of Theorem 4.1 is verified. ||
L 5.2 A doubly stochastic process
\':‘-'
:}:- We will only treat the simple example studied in Theorem 3.4,
., .
"~ “‘.--
:::- Theorem 5.2: Let {Xt’ t > 1} be as in Theorem 3.4 with the exception

that we replace the condition E(Xi) < K with the weaker condition ‘

E(Xt) < K for some K. Then there exists a sequence of estimators

~ ~ a,s. . . L .
{an} such that ana4 a and such that a, is obtained by minimization

P

igf of Ln in (4.1) as described in the conclusion of Theorem 2.1.
?:% Proof: Again we have that the functional form of ¢t is given by (5.1},
) -
:f but now with X and f given by (3.50) and (3.53). It follows
5 t]t-1 t]t-1
-j:-'; that
8¢t Bmt_l
ol -2{x, - (asm,_ )X H1 o+ —— Xt-l/ft[t-l (5.12)
and using the fact that Bkmt_llaak = 0 for k > 1 we have “
3%¢ om,_ )2 3%¢
t t-1 t X
——2-=2 1+T /ftltle —2|Ft-1 (5.13)
da da
while higher order derivatives of ¢t are zero. From (3.53) we have
I/ftlt 1 2 1/0%. On the other hand it was proved in the proof of
Theorem 3.4 that lamt_1 /3a| is bounded above by a constant independent .
. > 2 2. . 3
< .
of t, and since E(Xt xtlt-l) __E(Xt), it now follows that y
E(|a¢t/3a|) <K for some constant K,. Thus condition EN1 of Theorem '
4.1 holds. Conditions EN2 and FEN4 are trivially satisfied and it g
remains to verify EN3.
The matrix C" of EN3 in this case reduces to a scalar, namely
o
A
::5
N
A
fyrs
.':;\.' AL EE SRR A P P Yo T T Py P TN A .‘"‘n‘)- q‘\.\" Lo .~‘~ - -."-.‘°'-."\‘~"\'\‘.."\'.\ \"\:
O .::.:’.::_:'_? " RN AR A X KOOt .-\: o _-f - _. < 3'_ ". _\ ;—' -3 e ‘\~. .~ ._.g SN




A e - ):7\ _‘. ., - ‘-"VF -T_."T‘.' -_' . TR "'.‘~‘- .7 .T_-. T LT T T, T

e T
-.‘:;
« 3
.\:_-.
e . 39 , 2
- n 3¢ n am t-1
Rt n 1 t X
C == ) El—5 |F SR S PR (5.14)
KA n 2 t-1 n da 2 2 2
t=2 ( da t=2 (8 +yt_1)xt_1+0

It was established in the proof of Theorem 3.4 that
a.s. 2 2
1im inf (1 + 9m /Ba) > 0 and that Ye < 2b” 8”. Reasoning in the
t > o
same way as in the last part of the proof of Theorem 5.1 it is concluded
q 3-S-
that lim inf C > 0, and the theorem is proved. ||
n—-)oo

Unfortunately we have not been able to prove asymptotic normality ’

for any of the two examples treated here. The difficulty lies in

verifying condition FN2 of Theorem 4.2.

oL
oA

6. Summary remarks

.' ‘l \|

Ve
[ ]

> P
o,
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In this paper as well as in Tl we have developed a general frame-

!
.

vy

work for analyzing estimates in nonlinear time series models. We have

Ky )

given applications to a number of different model classes and tried
to deduce sufficient conditions for strong consistency and asymptotic
normality from the general conditions. Our conditions reduce to the

standard set of conditions (cf. Fuller 1976, Ch. 8) in the linear case,

except that we do not necessarily require a homogeneous residual

e

6- process {et}.

f;ﬁ: Explosive behavior, e.g. E(Xi) increases as an exponential

‘;Ef function of t as t + «, is not permitted in the present set up. It

’i;: should be noted, however, that Lai and Wei (1982, 1983) have recently

:f; proved consistency, hut not asymptotic normality, of parameter estimates

i;ﬁ in linear explosive models. It is sometimes difficult to find conditions

:‘f guaranteeing nonexplosive behavior for nonlinear models, and it is :

therefore a challenging task to try to extend Lai and Wei's results
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to nonlinear series. h
o L
‘ Our work has potential applications in several other directions. 1
'::' One would be to extend our results to more general classes of examples, . El
o
T especially in the doubly stochastic case. Another important problem \j
~ e, d
‘ is that of hypothesis testing, in particular in connection with . :
empirical identification of models.
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